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The pseudo-lattice (PL) method has been reformulated for ab initio self- 
consistent-field (SCF) calculations. The translational symmetries of infinite 
systems have been applied to the finite model chain by manipulating all the 
intramolecular and intermolecular Fock matrices. The nuclear repulsion 
energy has been corrected accordingly. The method has been tested for the 
linear chain of lithium hydride under the constraint of equidistance between 
all neighboring lithium and hydrogen atoms. The calculated results of the 
infinite chain have been compared with those of finite chains of lithium 
hydride under the same geometric constraint. The equilibrium geometries, 
band structures, intermolecular stabilization energies and potential curves 
have been studied. It is found that the infinite systems cannot be described 
by considering only first nearest neighbor interactions, and the intermolecular 
interactions must be considered at least up to third nearest neighbors in order 
to obtain accurate value of force constant of infinite systems. We can conclude 
from band structures of infinite chains that the boundary effect of the finite 
model chain is effectively removed by the PL method. 
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1. Introduction 

Various methods have been employed for the study of the electronic structures 
of polymers and molecular crystals [ 1-15]. Among them, the small periodic cluster 
(SPC) method [10, 11] and the PL method [12-15] utilize the translational 
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symmetry of Born-von-Karman cells or elementary molecules of crystals. The 
SPC method has been applied to the study of point defect problems of hexagonal- 
layered solids [10] and the electronic structure of solid hydrogen fluoride [ 11]. 
The PL method has been used to study the stability of various forms of ice [12], 
hydrogen bond energy of solid hydrogen fluoride [13], geometries of polymeric 
berillium hydride, polyethylene and polymeric boron hydride [14], and lattice 
vibration of A type zeolite [15]. The results of both SPC and PL methods were 
in reasonable agreement with other types of calculations such as crystal orbital 
(CO) method for molecular crystals. However, the previous applications of SPC 
and PL methods are all based upon semiempirical SCF methods [16], and no 
attempt have been made to extend the methods into ab initio calculations. In 
this work, we present the treatment to use the PL method in ab initio calculations. 

In the semiempirical treatment, all two-electron integrals involving three- and 
four-centers are neglected and the imposition of the translational symmetry is 
rather simple. In the ab initio treatment, the neglects of three- and four-center 
integrals are not inherent in the theory and the extra considerations are required 
in order to impose the translational symmetry. Therefore, the PL calculation 
using ab initio SCF method is slightly more complicated than one using the 
semiempirical computation, but offers considerable advantages in terms of 
accuracy and the potential for improvement. 

In this paper, we reformulate the PL method for ab initio calculations of linear 
chains of identical molecules for the reason of simplicity. Test calculations are 
performed for the linear chain of lithium hydride. Lithium hydride is well suited 
for the test purpose since many theoretical results are available for the structures 
and stabilities of lithium hydride clusters [17-22]. 

In the following sections, we describe the formalism and calculational method 
for the ab initio PL treatment and the results of actual calculations for LiH chain. 

2. Theory and method of calculation 

A polymer or molecular crystal is a collection of repeating unit cells or molecules 
with a certain translational symmetry. The aim of the PL method is to represent 
a crystal by this repeating unit cell which is usually a cluster of molecules. The 
PL method using ab initio SCF calculations is illustrated on a one-dimensional 
linear chain of identical molecules for simplicity, but extensions to more general 
shapes of clusters are not expected to cause any serious difficulties. 

Let us suppose that our model chain is composed by 2 N +  1 identical molecules 
and each molecule is made up by n atoms. If each molecule is expressed by m 
basis functions in the Fock equation, the total number of basis functions in the 
equation for the model chain is ( 2 N + l ) m  and the total number of matrix 
elements in the Fock matrix F is (2N+ 1)m • (2N+ 1)m. This F matrix can be 
arranged as ( 2 N + l )  • (2N+ 1) submatrices (Fig. 1) where the diagonal sub- 
matrices are intramolecular Fock matrices and other off-diagonal submatrices 
are intermolecular ones. These submatrices are denoted as H(I ,  J)'s which rep- 
resent the interactions between Ith and Jth molecules in the chain. The edge 
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Fig. 1. Submatrix notation for the Fock matrix of 2N 
the model chain composed by 2 N + 1  molecules. 
The dimensions of matrices are shown 2N+I 
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effect of clusters appears in both intramolecular and intermolecular submatrices. 
Since the matrix is symmetric for the usual choice of real matrix representations, 
we only limit our attention to the lower triangular part of the matrix. 

According to the translational symmetry of the elementary molecules in the chain, 
the molecules (A and B) at boundaries of the model chain are translated to the 
outside of other boundaries (A' and B', Fig. 2). This operation adds each 2N+ 1 
molecules to both sides of the model chain by the translational symmetry of 
repeating unit cells. In order to incorporate the translational symmetry of the 
infinite chain to model chain of finite size, both the diagonal and off-diagonal 
submatrices must be modified. 

All the diagonal submatrices are substituted by ( N +  1)th diagonal submatrix, 

H(I, I) = H ( N  + 1, N+ 1) (1) 

for all I 's of 1 < I < 2 N +  1 because among the molecules in the model chain, 
( N + l ) t h  molecule has the most similar environment to the molecule in the 
infinite chain. 

The off-diagonal submatrices are classified into two groups according to the 
interaction orders or distances between molecules. One group, group (i), contains 
off-diagonal submatrices with the intermolecular interaction order less than or 
equal to N. Other off-diagonal submatrices belong to group (ii) as shown in Fig. 
3. For the submatrices of group (i), all H ( !  + k, I)'s of 1 < I < 2 N + 1 for a given 
k are substituted by their central submatrix which is most suitable for expressing 
the intermolecular interactions in the infinite chain. Following relationship, 

H(I, J)= H(I+k,  J+k)  (2) 

I N§  2N+ I  

- - |  (b- . . . . .  - Q -  . . . . .  | (b---  

Fig. 2. Translations of the molecules A and B at the boundaries of the model chain 
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Fig. 3. Classification of the off-diagonal submatrices. The numbers in the Fock matrix represent the 
intermolecular interaction orders of corresponding submatriees 

for any integers /, J and k, is satisfied for the diagonal and off-diagonal sub- 
matrices of  group (i) after the successive above operations�9 For the off-diagonal 
submatrices of group (ii), the translational symmetries of elementary molecules 
and the repeating unit cells must be carefully applied. If  we define the translational 
operator T as 

RA, = TAA,RA (3) 

where RA and RA, are the positions of  molecule A and A' respectively, the 
interaction between molecules A and B is replaced by that of  A' and B so that 
the matrix element of  the Fock matrix F for the interaction between the basis 
funct ions/z  on molecule A and v on B is given as 

= h,,~+ ~ Px~[(/z'v]Ao')-�89 I vo-)] (4) 
Air 

where /z '  is the atomic orbital on molecule A' and all other symbols have their 
usual meanings. The overlap integral becomes likewise 

= I tx'(A')v(B) dr (5) 

These are transformations for the first nearest neighbor interactions at the right 
boundary of the model chain (see Fig. 2),  and those for other interactions in 
group (ii) are straightforward. 
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As the result of all the above operations, the total amount of electronic energy 
for each molecule in the model chain corresponds to the situation where N 
molecules are located at left and right sides of the molecule respectively (Fig. 
4). Therefore, the nuclear repulsion energy must be modified accordingly. The 
corrected total nuclear repulsion energy (Etr~ is given by 

EtrO; = M corr E r e p +  Erep 

n(2N+l) n(2N+l) 7.7..  
1 S" ~ J +  ]q-~ corr =~ E - -  (6) i = 1 j~=l Rij ~ rep 

where Ere~ refers to the original nuclear repulsion energy of the model chain, 
n x (2N+ 1) is the number of atoms in the model chain, Zi and Zj are the nuclear 
charge of atoms i and j, Rij is the distance between i and j atoms, and Er~ ~ is 
correctional nuclear repulsion energy for the given condition. E rCeep is obtained by 

E rCeOprr 1 v2N+I  . . . .  = 2  / '~=1 Erep 

--212N+1 ~ ( ' ~ )  ZiZ j 1(~) ZiZj) (7) 
a=l  i=1 kjeA(a) Rij jea(a) Rij / 

where ~Er~~ '~ is the correctional nuclear repulsion energy corresponding to the 
ath molecule in the model chain, n is the number of atoms in the ath molecule, 
and l(a) is the number of atoms in the region A(a) or B(a) in Fig. 4. The 
molecules in the region A(a) are located within the interaction range of the ath 
molecule while those in the region B(a) are not. 

In summary, the following procedures are applied to the Fock matrix F of the 
model chain in order to imply the translational symmetry of the infinite chain. 

Step I 
Intramolecular submatrices. All the intramolecular submatrices H(x, x)'s are sub- 
stituted by H ( N +  1, N +  1) which corresponds to the central molecule in the 
model chain. 

Step 2 
Intermolecular submatrices of group ( i) in Fig. 3. All the intermolecular submatrices 
of the type H(x+ 1, x) are substituted by the arithmetic average of H ( N +  1, N) 
and H ( N  + 2, N + 1) because these submatrices have no central submatrix. The 
submatrices of the type H(x  + 2, x) are substituted by their central matrix which 
is H ( N  + 2, N). All other intermolecular submatrices of group (i) are substituted 
in these manners. 

' I i CNmoocues, I Q I   Nmoecoes, 
I 

A(a) B(a) 

Fig. 4. New environment of ath molecule in the model chain for PL method. The bold-lined rectangular 
represents the model chain 
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Step 3 
Intermolecular submatrices of group (ii) in Fig. 3. At first, H ( 2 N + I ,  1) which 
corresponds to the first nearest neighbor intermolecular submatrix by utilizing 
the translational symmetry of unit cells in Fig. 2 is substituted by the transpose 
of one of H(x+ 1, x)'s which have been equalized at second step. Since the 
interaction geometry is opposite, the transpose is taken. H(2N, 1) and H ( 2 N +  
1, 2) which correspond to the second nearest neighbor intermolecular submatrices 
are substituted by the transpose of one of H(x+2 ,  x)'s. Other intermolecular 
submatrices of group (ii) are substituted in the same manner. 

Step 4 
Nuclear repulsion energy correction. The correction of nuclear repulsion energy is 
performed according to Eqs. 6 and 7. 

3. Calculations 

The SCF calculations were carried out using two different basis sets of contracted 
gaussian type functions (CGTF's) for Li, 9s/3s (Basis set I) [23] and lOs/4s 
(Basis set II) [24]. For hydrogen, 4s/2s [23] set was used. Although all Li-H 
distances are same in the crystalline lithium hydride [25], they are not the same 
for the minimum geometry of the linear (Li-H)~o due to the anisotropy of the 
linear model chain. All PL calculations, however, have been performed under 
the equidistance constraint since the magnitude of difference in distances is only 
about 10 -2 a.u. [21]. The minimum energy geometries of the linear (LiH), for 
n = 1 -  5 were obtained under the equidistance constraint and compared with 
those of the PL calculations on the (LiH)o~. The PL calculations have been 
performed using three different model chains which are composed by three, five 
and seven molecules of lithium hydride, respectively. The intermolecular stabiliz- 
ation energies have been calculated using the counterpoise (CP) method [26] in 
order to reduce the basis set superposition error. In the CP method, the energies 
of subsystems are calculated using all the basis set of the whole composite system 
[27]. 

4. Results and discussion 

The equilibrium properties of the linear (LiH)n for n = 1-5 obtained under the 
equidistance constraint are listed in Table 1. Those of the linear infinite chain of 
lithium hydride, (LiH)~, calculated by the PL method are listed in Table 2. The 
PL calculations with the model chain (LiH)3, which includes only first nearest 
neighbor interactions, failed to produce minimum energy geometries of (LiH)~, 
implying that more than first nearest neighbor interactions are necessary in the 
PL method even for the qualitative description of the infinite chain of LiH. The 
equilibrium bond lengths of (LiH), in Table 1 increase with the increase of n 
values. Those of (LiH)~ in Table 2 are larger than for the linear finite chains but 
are much smaller than the experimental bond length of crystalline LiH (2.045 A) 
[25], indicating that the residual anisotropy from one dimensional linear model 
chain is still affecting the bond length. In Fig. 5, the correlations between 
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Table 1. Equilibrium properties of the linear, equidistant (LiH)~ for n = 1-5 a 
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LiH (LiH) 2 (LiH) 3 (LiH)4 (LiH)5 

r e (/~) 1.615 1.638 1.648 1.653 1.655 
-E/molecule (a.u.) 7.9647 7.9890 8.0012 8.0083 8.0128 
Ee p b (kcal/mol) - -  12.98 19.92 24.00 26.65 
Ax~ c (a.u.) - -  0.163616 0.212716 0.234696 0.246710 
A2,~ r (a.u.) - -  0.148266 0.194218 0.215589 0.227436 
q n  a 1.5022 1.7160 1.7221 1.7198 1.7186 

1.5271 1.7104 1.7104 1.7079 
1.5201 1.7107 1.7098 

1.5310 1.7101 
1.5321 

Using basis set II 
b Intermolecular stabilization energies per molecule obtained using CP method, a.u. 

627.51 kcal/mol 
c Bandwidths of splitted molecular orbitals 
a Mulliken's populations of hydrogen atoms 

of energy = 

equ i l ib r ium b o n d  lengths and  total  energies per  molecule  are presented,  and  the 
calculated results of  CO method  [21] are compared  with ours. The results of  

bo th  methods  vary widely along with the n u m b e r  of neighbors  explicitly con- 
sidered and  the size of basis sets. The near  l inear  re la t ionship is observed for 

finite chains.  There are some deviat ions from the re la t ionship in the case of 
infinite chains.  More significant differences can be found  be tween bandwid ths  

of finite chains  and  those of infinite chains, The bandwid ths  of finite chains 
increase with the size of  the chains,  bu t  those of the infinite chains are very small  

compared  with finite chains. The bandwid ths  ob ta ined  by CO method  are 0.00021- 
0.00034 for 10- and  0.00475-0.02001 for 20- [21] which are agreed well with our  

results. Because the b a n d  edges, which are defined by the orbital  energies of 
given type of  orbitals,  come from the orbitals centered at the boundar i e s  of the 

clusters, we may conclude  that  the b o u n d a r y  effect of  the model  chain  is effectively 
removed by the PL method.  The potent ia l  curves of the l inear  (LiH)~'s  for n = 1-5 

are plot ted to compare  their  relative curvatures in  Fig. 6. The larger the size of 

Table 2. Equilibrium properties of the linear, equidistant (LiH)~ 

Basis set I II 

Model chain a 5 7 5 7 

re (.~) 1.667 1.725 1.708 1.7:~4 
-E/molecule (a.u.) 8.0479 8.0420 8.0474 8.0422 
Er (kcal/mol) 49,08 46.18 48.90 45.81 
A1~ (a.u.) 0.00025 0.00020 0.00020 0.00018 
A2,~ (a.U.) 0.02072 0.02230 0.02115 0.02237 
qrr 1.6615 1.6650 1.6635 1.6698 

a The numbers represent n of (LiH), 
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(LiH)~ I A 
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Fig. 5. Correlation between the equilibrium bond lengths and total energies per molecule of the linear, 
equidistant (LiH). for n = 1-5 and oo. A and A: basis set / ,  []  and � 9  basis set / ,  A and []  of  (LiH)~: 
(LiH)s for model chain; �9 and �9 of (LiH)~: (LiH) for model chain; O: results of  the crystal orbital 
method by varying the number of neighbors and the basis sets (from [21]) 

the cluster, the larger the curvature of the parabola is. Those of the infinite chains 
are compared with potential curve of (LiH)5 in Fig. 7. The curvature of the 
potential curve of  (LiH)oo using (LiH)5 as a model chain is smaller than the 
curvature of (LiH)5 chain. The curvature of  (LiH)~o using (LiH)7 is larger. In 
order to obtain accurate value of force constant of  infinite systems, the inter- 
molecular interactions must be considered at least up to third nearest neighbors 
as one sees in the case for (LiH)7. The intermolecular stabilization energies of  
the infinite chains are substantially different from those of the corresponding 
clusters. From the trend of  intermolecular stabilization energies of finite chains, 
we also conclude that the size of linear, finite chain which have similar value of 

t 5 
3 E 

I 

req r (Li--H) 

Fig. 6. Comparison of potential curves of the linear, equidistant lithium hydride chains. The numbers 
in the figure represent n of (L iH) . .  
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Fig. 7, Comparison of potential curves of (LiH) 5 
and (LiH)o~. The superscripts of (LiH)oo represent - 
the size of the model chain 

(Li 

i i i , 

(LiH) 7 

eq 

~H) 5 

i �9 

r (Li-H) 
i n t e rmo lecu l a r  s tab i l i za t ion  energy to ( L i H ) ~  is too  large to t rea t  by  ab initio 
S C F  me thod .  The  amoun t s  of  cor rec ted  energies  by  the CP  m e t h o d  are 2.3- 
3.6 k c a l / m o l e  for  the  finite and  infinite chains.  The s tab i l i za t ion  energies  in Table  

2 are much  la rger  than  h y d r o g e n  b o n d  energies  and  even la rger  than  l i th ium b o n d  
energies.  The  l i th ium b o n d  has been  s tud ied  expe r imen ta l ly  and  theore t i ca l ly  as 
an  ana log  o f  h y d r o g e n  b o n d  [28-31].  A d d i t i o n  o f  one s G T F  to Li affects only  
the  b o n d  length  slightly. We  expect  tha t  the  energet ics  are  much  affected by  
add i t i ona l  po l a r i za t i on  funct ions  [32, 33]. The  Mul l i ken ' s  p o p u l a t i o n s  o f  the  
a toms o f  L i H  are all same for molecules  in the  all  m o d e l  chain.  The  p resen t  
resul t  demons t r a t e s  tha t  the  modi f i ca t ion  o f  the  PL  me thod  for  ab initio S C F  
ca lcu la t ions  have  been  p e r f o r m e d  successful ly  for  l inear  chains ,  and  the in forma-  
t ions o b t a i n e d  f rom the PL  m e t h o d  are useful  in many  respects .  I f  the  m e t h o d  
is p r o p e r l y  ex tended ,  the  PL me thod  is one o f  successful  me thods  which  can be  
economica l l y  a p p l i e d  to the  s tudy  o f  sol id  and  poss ib ly  to surface s tudies  wi thou t  
los ing all the  advan tages  o f  ab initio calcula t ions .  
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